{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Lab 9b - 2-fold cross validation\n",
"\n",
"We will finish Lab 9 in this notebook."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import statsmodels.formula.api as smf\n",
"import seaborn as sns\n",
"import numpy as np\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn import datasets, linear_model\n",
"from sklearn.model_selection import KFold\n",
"\n",
"\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" dataset | \n",
" x | \n",
" y | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" I | \n",
" 10.0 | \n",
" 8.04 | \n",
"
\n",
" \n",
" 1 | \n",
" I | \n",
" 8.0 | \n",
" 6.95 | \n",
"
\n",
" \n",
" 2 | \n",
" I | \n",
" 13.0 | \n",
" 7.58 | \n",
"
\n",
" \n",
" 3 | \n",
" I | \n",
" 9.0 | \n",
" 8.81 | \n",
"
\n",
" \n",
" 4 | \n",
" I | \n",
" 11.0 | \n",
" 8.33 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" dataset x y\n",
"0 I 10.0 8.04\n",
"1 I 8.0 6.95\n",
"2 I 13.0 7.58\n",
"3 I 9.0 8.81\n",
"4 I 11.0 8.33"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Load the Anscombe quartet data\n",
"anscombe = sns.load_dataset(\"anscombe\")\n",
"anscombe.head()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" x | \n",
" y | \n",
"
\n",
" \n",
" \n",
" \n",
" 22 | \n",
" 10.0 | \n",
" 7.46 | \n",
"
\n",
" \n",
" 23 | \n",
" 8.0 | \n",
" 6.77 | \n",
"
\n",
" \n",
" 24 | \n",
" 13.0 | \n",
" 12.74 | \n",
"
\n",
" \n",
" 25 | \n",
" 9.0 | \n",
" 7.11 | \n",
"
\n",
" \n",
" 26 | \n",
" 11.0 | \n",
" 7.81 | \n",
"
\n",
" \n",
" 27 | \n",
" 14.0 | \n",
" 8.84 | \n",
"
\n",
" \n",
" 28 | \n",
" 6.0 | \n",
" 6.08 | \n",
"
\n",
" \n",
" 29 | \n",
" 4.0 | \n",
" 5.39 | \n",
"
\n",
" \n",
" 30 | \n",
" 12.0 | \n",
" 8.15 | \n",
"
\n",
" \n",
" 31 | \n",
" 7.0 | \n",
" 6.42 | \n",
"
\n",
" \n",
" 32 | \n",
" 5.0 | \n",
" 5.73 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" x y\n",
"22 10.0 7.46\n",
"23 8.0 6.77\n",
"24 13.0 12.74\n",
"25 9.0 7.11\n",
"26 11.0 7.81\n",
"27 14.0 8.84\n",
"28 6.0 6.08\n",
"29 4.0 5.39\n",
"30 12.0 8.15\n",
"31 7.0 6.42\n",
"32 5.0 5.73"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Separate out the Anscombe 3 data\n",
"anscombe_3 = anscombe[anscombe[\"dataset\"] == \"III\"]\n",
"anscombe_3 = anscombe_3[[\"x\",\"y\"]]\n",
"anscombe_3"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X1sHOd9J/Dvb/aVS4oiKS79ohdL\nsqUlEqd5Me2ksS2TSlIErZEUvbZx0aK+pAf77pCXyyGXxAjOAYK7aw4t0BrXQ8+GkzqHpHFybooY\nBZLGjUiriWPHb4kdJ6QkS7YlWcpSIld82beZ2d/9MbsSKZHcF+7s7Mx8P0Aga7niPquI892ZeZ7v\nI6oKIiIKL8PrARARkbcYBEREIccgICIKOQYBEVHIMQiIiEKOQUBEFHIMAiKikGMQEBGFHIOAiCjk\nol4PoBHDw8O6e/dur4dBROQrzz///DlVTdd7ni+CYPfu3Xjuuee8HgYRka+IyOuNPI+XhoiIQo5B\nQEQUcgwCIqKQYxAQEYUcg4CIKOR8MWuIiMgLU9NZPHj4OE7O57FzMIV7D+zF+OiI18NqO54REBGt\nYWo6i/sffwXZxSIGemLILhZx/+OvYGo66/XQ2o5BQES0hgcPH0csIkjFoxBxfo1FBA8ePu710NqO\nQUBEtIaT83n0xCKrHuuJRXBqPu/RiNzDICAiWsPOwRQKpr3qsYJpY8dgyqMRNU5VkS9bDT+fQUBE\ntIZ7D+yFaTsH1NqB1bQV9x7Y6/XQNpQvWzg1X0Aubzb8ZzhriIhoDeOjI/gSnHsFp+bz2NHls4bK\nVgVzy+WLZwIRI1LnT1zCICAiWsf46EjXHvhrKhXFfL6MhaJz5tIKBgERkU8tFE3ML5dhV1oLgBoG\nARGRzxRNG+eWSihblbZ8PwYBEZFPWLZzH2Cp1PiMoEYwCIiIupyqIpc3kSuYLd8H2AiDgIioiy2X\nLMwtl2Ha7bkMtBYGARFRFypZNuaWyyiU7fpP3iQGARFRF6lUFHP5MhYKjS8I2yzXVhaLyFdFJCsi\nv1jx2F+IyLSIvCQi/ygiA269PhGR3ywUTZycz3c0BAB3KyYeAfDByx57AsCNqvobAI4AuM/F1yci\n8oWSZeN0roBzi6VNrwlohWtBoKqHAcxd9tgPVLU27+lpADvcen0iom5XqSjOL5Vwer6Akun+vYD1\neHmP4GMAvuXh6xMReWa5ZOH8UhlWxb3ZQI3yJAhE5AsALADf2OA59wC4BwB27drVoZEREbnLtCs4\nv1RuqibabR2voRaRuwHcCeCPdYOVEar6kKqOqepYOp3u3ACJiFzgLAor49R8oatCAOjwGYGIfBDA\n5wDcoarB2+aHiGgNRdPG7GLJ1UVhm+FaEIjINwGMAxgWkVMAvghnllACwBMiAgBPq+q/d2sMRERe\nsuwK5vJlLBW76wzgcq4Fgar+0RoPf8Wt1yMi6haqigsFE7m8iYoL3UDtxpXFRERttFSyMO9yN1C7\nMQiIiNqgaNo4v1z2dD1AqxgERESbYNoVzLuwR0AnMQiIiFpgV/cKXtzEXsHdgkFARNQEv90IbgSD\ngIioQYtFE/PLZlfUQrQTg4CIqI5C2cZc3p83ghvBICAiWkfZcjaL77ZKiHZjEBARXSZIN4IbwSAg\nIlrBuRFc9mSDGK8wCIiI4NwHOL9cQtkK1o3gRjAIiCjUTNu5D7Ds4wVhm8UgIKJQqlQUuYKJCwUz\nFPcBNsIgIKLQCep6gFYxCIgoNPxcDOcmBgERBZ5fNojxCoOAiAKrUnF6gS4UgtML5AYGAREFjqpi\nsWQhx/sADWEQEFGgLBadZlA/7RDmNQYBEQXCcsnCnM+2iOwWDAIi8rV82QmAMK4IbhcGARH5UtG0\nMbdcRpFTQTeNQUBEvlI0bcznyyiUGQDtwiAgIl8oWxXk8v7eJL5bMQiIqKuFbW8ALzAIiKgrcTFY\n5zAIiKirqCoWilboNofxEoOAiLoCVwN7h0FARJ7jamBvMQiIyDNcDOaeZi6rMQiIqOO4GMwdFVX8\n8s0FTM3M4vDR2Yb/HIOAiDqGi8HaT1VxNLuEyeksJmdmkV0sNf09GARE5LqiaSOXN5EvczFYu5w4\nt4zJmSwmp2dxOldY9bXr0734wFuuwn3/s7Hv5VoQiMhXAdwJIKuqN1YfGwLwLQC7AbwG4A9Vdd6t\nMRCRtxgA7XVqPo/JmVlMTmfx2vn8qq/tGkphPJPGwcwIdm1LIRmL4L4Gv6+bZwSPAPgbAP93xWOf\nB/BDVf2yiHy++vvPuTgGIvJA2apgPl/GMusgNu3sQhFT1cs+R7NLq752zdbkxYP/3nQvRKSl13At\nCFT1sIjsvuzhDwMYr/731wBMgUFAFBiWXcF83sRi0fR6KL52bqmEJ484n/x/eWZx1deG++KYyIxg\nPJPG6NVbWj74r9TpewRXqeoZAFDVMyIyst4TReQeAPcAwK5duzo0PCJqhaoil2cdxGbM58s4fOQc\npmayeOnUBaz8WxxMxXBgv/PJ/63b+2G04eC/UtfeLFbVhwA8BABjY2P8l0XUpRaLJua5Grgli0UT\nPzp6DodmZvHiG/NYOfW/PxnF7fvSmMik8fadA4gY7T34r9TpIPi1iFxTPRu4BkC2w69PRG1SKNs4\nv1ziYrAm5csWnnr1PA5NZ/Hca/OwVhz9e+MR3HrDMCZG07hp1yCiEaMjY+p0EDwO4G4AX67++t0O\nvz4RbRLXAjSvaNp45sQcJmeyePr43KrwTEYN/Ob12zCeGcG79wwhHu3MwX8lN6ePfhPOjeFhETkF\n4ItwAuDbIvJnAN4A8AduvT4RtRengjanbFXw7GtzmJqZxY9fPYeieengH4sI3r1nGyYyabzn+m3o\niUU8HKm7s4b+aJ0vvc+t1ySi9itZTgBwKmh9ll3BiydzmJyexb8em8Vy6dJZU8QQ3HTdICYyadx6\nwzD6Et1zi7Z7RkJEXYVrARpjVxQvn76Ayeksnjwyi4Xipb8vQ4C37xzARGYEt+8bxtaemIcjXR+D\ngIhW4d7A9a0sd5s6Mou55fKqr79tez8mMiM4sD+Nod64R6NsHIOAiAAApu2cASwVGQBrqZW7HZrO\nYmqNcrfRq7dgIpPGHfvTGOlPejTK1jAIiELOtCvI5U0slbg5/FpOnFu+ePBfq9yttsr32oEej0a4\neQwCopCq1UEwAK50ci6PqZlZTM6sXe42kUljolruFgQMAqKQsSuK+XwZi0UGwEpnLxQxNbN+uVvt\n4L+ZcrduxSAgCglVxYWCszcw+4Ac9crdxjNpHBwdQeaq9pS7dSsGAVEILJUszC+XuTk8gFy+jCc9\nKnfrVgwCogBbLlmYz3Nz+HrlbrftG8bBzIjr5W7dikFAFED5soX5vIlSiDeHz5ct/PjYeUzOXFnu\nlopHcJsH5W7dikFAFCCFso25fDm0AXCx3G06i6dPrF3uNpEZwS0elbt1KwYBUQAUTRtzy2UUQxgA\nK8vdnnr1PAor/g66rdytWzEIiHwsrJXQ9crdxlaUu/V2Ublbt+LfEJEPlSwb88vhqoSuV+72jp0D\nGO/ycrduxSAg8pGwNYI2Uu42nhnBHT4pd+ukZma+MgiIfCBMjaD1yt0yV2/BQZ+Wu7nJEEEyFkEy\nZiAZiyDRxM1wBgFRF6v1AS0WTa+H4ipVxYlzy5is9vu8mSuu+npQyt0a9dPjc3j02ZM4s1DANf09\nuOvmnbhl79Cq50QNA8mYgUT14J+Itn4jnEFA1IXsiiKXL2Mh4H1AtXK3QzNZvB6CcrdG/PT4HB44\ndBRRQ9CfjOL8cgkPHDqK/2zsx/joyMVP/LE2rn1gEBB1Ebvi9AEtFILbB1Qrdzs0M4tjISt3a8Sj\nz55E1BCk4lEYAmxJRlA0LXznxdP4g5t3uvKaDAKiLhD0ANio3C3dl8B4Jo3xTBqjVwe73G09hggS\nMQPJaATZpSIGe2IwjEuf+FPxKE7N5zf4DpvDICDyUJADYD5fxuE65W4TmTRu3L41NOVuNRGjemM3\nGkEiZiARNS4G4HVDvcguFpGKXwqCgmljx6B7l8cYBEQeqFQD4ELAAoDlbmuLRQznE3/14L9RvcW9\nB/bi/sdfQb5soScWQcG0YdqKew/sdW18DAKiDqrtCXChYMKuBCMANip3641HcGsIy93i0epBPxZB\nMmo09b7HR0fwJQAPHj6OU/N57BhM4d4DezE+OuLaeBkERB2gqlgoWMgVyoEIgKJp4+njc5iaYbmb\niCBx8cDvXOc3Nnm2Mz464uqB/3IMAiIXqSoWihYu5E1YFX/vCbCy3O3Hr55D0bz0fsJU7hYxBIlo\nBD2xK6/v+xWDgMgFqorFkoXcsr8DoKFyt9ER3Hr9tsCWu0UNA8l4Y9f3/SqY/88ReSQIAbCy3O3w\n0XO4ULi0qrlW7jaRGcFtAS1328z1fb9iEBC1yWLR2Rjej/sCh7Xc7fLr+4loJFSzmWoYBESb5Nd9\ngWvlbpPTWUyuU+42kUljPEDlbmsVs/n9+n47MAiIWuTXfYFPnFu+2Ox5OldY9bWglbu1s5gtyBgE\nRE0qlJ1dwfy0LaSfy90aaeKsiUWMVZ/421nMFmQMAqIG+W1byLMXipiccS77rFXudnDU+eS/d7h7\ny93Wa+L8FPbh3ddvc27srri5G8br++3gSRCIyKcB/DsACuBlAB9V1eLGf4rIG0XTRi7vj20hGyl3\nOzg6gv1X9XXtwX+lWhNnTywCCNCbiKJo2vjOi6fxkVt2+uI9+EHHg0BEtgP4JIC3qGpBRL4N4C4A\nj3R6LEQbKVlOAHT7tpC5fBlPblDudsd+57LPW7f3+6rcLWIIfr1YxEBPDIYhEDizfKKG4MyFAkOg\njeoGgYh8HMA3VHW+za/bIyImgBSAN9v4vYk2xQ/bQtYrd7t9n9Ps6adyt7WK2XZvqzZxRi4dqtxu\n4gyjRs4IrgbwrIi8AOCrAP5ZN7FlkqqeFpG/BPAGgAKAH6jqD1r9fkTtYtrOxvBLxe4MgHzZwlOv\nnseh6fXL3cYzaYxd549yt3jUqNY0rL9wy4smzjCSRo7p4pyD/RaAjwIYA/BtAF9R1VebfkGRQQD/\nAOAjAHIA/h+Ax1T165c97x4A9wDArl27bnr99debfSmihph2Bbm8iaVS920LGZRyNxG5OH2zpzp/\nv9FitqnpbEebOINERJ5X1bF6z2voHoGqqoicBXAWgAVgEMBjIvKEqn62ybG9H8AJVZ2tDvQ7AN4L\nYFUQqOpDAB4CgLGxse766aRAsOwKcgUTi122L3Ct3G1yZhZPrVHudsueIRzMjHS83K2ZaZwbbbzS\nrE43cYZRI/cIPgngbgDnADwM4L+oqikiBoCjAJoNgjcAvEdEUnAuDb0PwHNNfg+iltkrNoXplgCw\n7ApeeCOHyZksfnTsXNeVu200jfOWvUNNbbxC3aeRf1HDAH5PVVddm1HViojc2ewLquozIvIYgBfg\nnF28iOonfyI3dduuYHZF8dKpHKZmZvHkkVksrLg3YQjwzp0DGM+M4PZ9w+j3uNxt1TROOHvoFi1n\nGufvj+3wxT0JWl/dIFDV+zf42q9aeVFV/SKAL7byZ4ma1U0BsLLc7ckjszh/RbnbVkxk0jjQReVu\nIoKziwUMJGOIGAZEnMdiEWcaJ0PA/7iymAKrUlEsFL3fFrJW7lbr97m83G20Wu52R5eUu61VzLZn\nWx+yi0XEopeu83MaZ3AwCChwumVbyFq52+RMFm/mVi+c76Zyt0aK2TiNM9gYBBQY3bAtZL1yt/FM\nGgc9LndrpZjNiw3VqXMYBOR7lYpisWjhQsGbAKhX7jaRSWNidKRt5W7NTOMUkbYVs3EaZ3AxCMi3\n7IpioWBiodj5ewBelbvVm8ZpiDjTOKORi5/62clD9TAIyHcsu4IL1YVgnZwF1Ei528HREbzlWvfK\n3S6fxtkTj6Bk2viHF07hd9+1nTtuUUsYBOQbdkWRy5ex0MGVwA2Vu42m8fYdnSl3O7tQwNaeS9M4\nDRHEIwbOLhSR7OAqYwoWBgF1PVVnHUAu35l1APmyhR8fO4/JmY3L3W66btD1HbDiK67tJ6MG9gw7\n0zjjnMZJbcQgoK7VyZvAtXK3yZksnvGo3E1EkIiumNETjVxRzMZpnOQGBgF1nU7dBK5X7vbuPdsw\nkUm7Vu4WMQSJ6OqFW/Wu73MaJ7mBQUBdoxM3gb0sd4saBpLxzRezcRontRuDgDzndh20XVG8fPoC\nJqeza5a7vWPnACYyI7ht3zC2Nlju1shc/ni02r8fX3/jFaJuwCAgz7gZACvL3aaOzGJujXK3g6Np\n3L6v+XK39ebyfya6HxOjV12safDLFpFEDALqOHPFJaB2BkBD5W6jIxjfn0Z6S6Ll13n02ZOIRQSp\neBQiQH80gkLZwmPPn8a/uWnnZt8GUccxCKhjylYFuUIZyyW7rQFQK3ebmpnF6Vxh1dfaVe62spht\ndqmIwVR81Y3dVDyKU/P5Db4DUfdiEJDrylYFuXwZS6X2bQpfr9xtIpPGxCbK3TYqZts11IvsYhGp\n+KUfH87lJz9jEJBrSpaNC9VN4dvBzXK3RHXBViPFbJzLT0HDIKC2K5Rt5AplFMp2/SfXMbtYLXeb\nyeJX65S7TYymkblqS8MHfxG5uGCrNn//8oVbG+FcfgoaBgG1zXLJQq5gomRuLgBq5W6TM1m8XKfc\n7bkT83joyRMbTuMUcUramlm4VQ/n8lOQMAho05ZKFnL58qpahmbVK3c7sD+N8czqcrd6lcyxiIEt\nySj6ElHO4SfaAIOAWrZYdIrgTLu1AGik3G1iNI2bdg2ueSC/opK5er3+28+fxIfeee2qm7lEtD7+\npFBTVBWLJWc7yFYCoJ3lbmcWCuhPVv8JCxARwZZkFLOLJYYAURP400INqVQUC0UTCwWr6SZQt8rd\nrunvwVy+hL5EDIY49wLyZYvTOImaxCCgDbVaBNdQuVsmjVtvGG6p3C0Ri+A/3LEX//170yhZNnpi\nEeTLFqdxErWAQUBrKpo2FgomlsuNrwK2K4qXTuUwOTOLw2uUu71z5wDGmyx3u1wqHsXWnhh64hFs\nH+hBIhbhNE6iTWIQ0EW16/8LBbPhGUC1crdHnz2Jn56YW3XDF9hcuVtNxBBsScawJRm9YkcwTuMk\n2jwGAaFsVbBYbPzyT71yt3hEkIhF8PHxG/CBt17V8riihoGtPTH090S5ITuRixgEIZYvW1goWMiX\nG6uAqJW7Tc5k8WauuOprsYhg64pP7QXTxvd+cbalIGAAEHUWgyBk7IpiqWhhodjY9M9Gyt3+6aU3\nMdQbh+DSQTsZM3B2oXD5t9tQIhbB1p4YeuMRBgBRBzEIQkBVkS/bWCxaKJj1b/42VO6WGcHetFPu\n9vOTF3B+ubRq6mfRrODq/sZqn5OxCAZTcfTE278vMBHVxyAIsEpFsVi0cKFg1p37v5lyt7tu3okH\nDh1FwbSRjBkomhVYFcVdN2+8SUs8amCoN87FX0Qe409gAJl2BQsNzP2fz5dx+MgsJmdm1y13m8iM\n4K3b+2FscKnmlr1D+BT24dFnT+LsQgFXr1P+VhOLGBjsjaOvzZvDE1Fr+JMYIP/88hk8+K/HcTq3\nfhPnQsHEj46dw+Q65W6373M++a8sd2vELXuH1j3w18QiBgZSMWxJtraGgIjc4UkQiMgAgIcB3AhA\nAXxMVX/ixVj8zrQrWCxa+JdfnsVf/cvaTZw37ujHU6+ex6Hp1srdNitqGBjojWFLgrOAiLqRV2cE\nDwD4vqr+vojEAbAcpgmqiqWShaWSdXHzl79/ZnUTZyJqIJ838effn0bBtNcsdzs4OoKbd9cvd2tV\nLGKgP8lpoETdruNBICL9AA4A+LcAoKplAOVOj8OPCmUbSyULy6Urr/2fWSigLxHBUsnCYtHCUtnC\nyqfUyt0Ojqbx7r3Nlbs1qzcRRX8yxllARD7hxRnBXgCzAP5ORN4O4HkAn1LVZQ/G0vWKpnPwz5fs\nNWf+WHYFL57MwbQUxxfzuPzecH8yiv84cQNuvX5bS+VuzehNRDGQiiERZQAQ+YkXQRAF8C4An1DV\nZ0TkAQCfB/BfVz5JRO4BcA8A7Nq1q+OD9FJt0ddiae3On1q529TMLJ68rNwNAHqqWzLGIwY+/f79\ndW/iblYq7gRA0sWzDCJyjxdBcArAKVV9pvr7x+AEwSqq+hCAhwBgbGys8f5jn7IriuWyc9lnrU3f\na+Vuk9WD/9zy6qtpb9u+FXuHe3Esu4Tzy6W6UzjbgQFAFAwdDwJVPSsiJ0Uko6ozAN4H4JedHoeb\npqazePDwcZycz2PnBtXIll3BctlGvmyhaFauWPGrqjjya6fc7ckjV5a7jV69BROZNMYzI0hvSbj6\nnlbqiTsrgRkARMHg1ayhTwD4RnXG0HEAH/VoHG03NZ3F/Y+/glhEMNATQ3axiPsffwVfglOZXDRt\nFMo28qaNknnlJ39g43K3G9J9GM84G7lfO9BYhUO7MACIgsmTIFDVnwEY8+K13fbg4eOIRQSpeBSq\nimQsArti4X8dOoY96V7YlbWvctUrdzs46nzy3zXU+Zm2iVgEQ+wCIgosrixuo0pF8frcMvqTUZh2\nxZniqc7UzdO5/BUhUK/c7eDoCMYzaewd7vVkHn4s4nQBuT3biIi8xZ/wTbAriqJpO/+zKihbFYz0\nJTds4txMuVunGCIYTMW5EIwoJBgETTDtSvXA7/y6Vp//Wk2cJauC67al8J++9bNNlbt1Ql8yim29\niaZ6hojI3xgEGyhZzkG/VD3416tyBi41cX79mdfxxlweFQWWSxa++/M3Lz6nPxnFgf3ODd9my93c\nEo8aGO5L8EYwUQgFNggancJZo6ooWas/8Teyf+9KyyULT716HpMzWUyfXbyi3O22fcMYz7hX7taK\niCEYSMWxtYeNoERhFcggqDeFE3Cu79c+8ddK2ert3LWWomnj6ePnMTkzi6ePn4dpX/oenSp3a0U8\naqC/h42gRBTQIFg5hRNwVsAul0z876ljeOv2rete329U2arg2dfmcGg6i58cP4+ieel7dbLcrVki\ngt54BFtYCEdEKwQyCE7O59GfjMKuKCqqUHUugZycy2OxaLb0PS27ghfeyGFyJosfHTuH5dKlxWAR\nQzB23SAmRkc6Uu7WrKhhoL8nii3JWFfcjyCi7tJdR6wWXX59P92XwLml1jdTr6mVu03OzOLwZeVu\nhgDv3DmA8cwIbt83jP4uvMYeNQxsTcXQn+TlHyJany+DoFJRFK1LN3VLl13f/8hYa5upA42Vux0c\nTeP2fWkM9cbb/t7agQFARM3wRRAogKWSdXHx1lrVzCs1u5l6rdxtciaLqZl1yt1GRzC+P93Rcrdm\nRQ0DW3u4IxgRNccXQVC2KsguFOs/cYV6m6mrKk6cW8bkzOyG5W4To2lcs7Wz5W7NihiCgR6uBCai\n1vgiCNrpjbk8pmaymJyexetzq8vdrhtKVQ/+3pS7NStiiHMGkIzB4E1gImpRKIKgkXK3iUwaezwq\nd2sWA4CI2imwQeCHcrdmGeIEwNYeBgARtU+ggmA+X8bhI7OYnJldt9zt4OgI3nKt9+VuzTBE0F8N\nAK4DIKJ2830QLBRM/OjYOUxOZ/HiyRxWVv53Y7lbMxgARNQJvgyCleVuz702v2a520RmBO/aNdA1\n5W7NEBH0J6MYSMUZAETkOt8EgVPuNofJmey65W4TmRHcsqe7yt2aISLoS0QxmIr5MsCIyJ98EQRn\nLhTwe3/71BXlbu/Zuw0Tme4rd2tFXyKKwd44YgwAIuowXwTBYtFCn1lBxBDcvHsQ45nuLHdrRV8y\nioGeuG/PYojI/3xxJE3FI/jMb+3HbTd0Z7lbK/qSUQymeAZARN7zRRDsGEzht992jdfDaAueARBR\nt/FFEARBX8KZBcQAIKJuwyBwGQOAiLodg8AFIoItySi29sR4D4CIuh6DoI24EIyI/IhB0CZcB0BE\nfsUg2KRkLIKh3jiSPl/QRkThxSBoUTxqYKg3jlScf4VE5G88ijUpFjEwkIphSzIYC9uIiBgEDYoa\nBramYuhPcl9gIgoWBkEdIoIB7gpGRAHmWRCISATAcwBOq+qdXo1jI33JKIZScVZCE1GgeXlG8CkA\nvwLQ7+EY1hSLGEhvSXAmEBGFgicfdUVkB4DfAfCwF6+/HhHBUG8cOwZ7GAJEFBpenRH8NYDPAtiy\n3hNE5B4A9wDAtTt2uj6gvkQUQ728DERE4dPxo56I3Akgq6rPb/Q8VX1IVcdUdWxo27Br40nEIrh2\noAcj/UmGABGFkhdnBLcC+JCI/DaAJIB+Efm6qv5JJwcRNQwM9nI9ABFRxz8Cq+p9qrpDVXcDuAvA\noU6GgIhgMOXcB2AIEBGFbB0B7wMQEV3J0yBQ1SkAU26/TiIWwTYWwxERrSnQZwS8D0BEVF8gg6BW\nCzGQirEXiIiojsAFQSoexbY+bhBDRNSowARBLGJgWx/3ByAiapbvj5q1fYKHeuO8DERE1AJfB0Ei\nFsFwXxyJKGcDERG1ypdBYIhgsDeOrT2cDUREtFm+C4LeRBTbuCiMiKhtfBMEUcO5Gdyb8M2QiYh8\nwRdH1Ygh2DHYw60iiYhc4IvrK1FDGAJERC7xRRAQEZF7GARERCHHICAiCjkGARFRyDEIiIhCjkFA\nRBRyDAIiopBjEBARhRyDgIgo5ERVvR5DXSIyC+D1Fv/4MIBzbRyOH/A9h0PY3nPY3i+w+fd8naqm\n6z3JF0GwGSLynKqOeT2OTuJ7DoewveewvV+gc++Zl4aIiEKOQUBEFHJhCIKHvB6AB/iewyFs7zls\n7xfo0HsO/D0CIiLaWBjOCIiIaAOBDwIRiYjIiyLyT16PpRNEZEBEHhORaRH5lYj8ptdjcpOIfFpE\nXhGRX4jIN0Uk6fWY3CAiXxWRrIj8YsVjQyLyhIgcrf466OUY22md9/sX1X/XL4nIP4rIgJdjbLe1\n3vOKr31GRFREht147cAHAYBPAfiV14PooAcAfF9VRwG8HQF+7yKyHcAnAYyp6o0AIgDu8nZUrnkE\nwAcve+zzAH6oqvsA/LD6+6B4BFe+3ycA3KiqvwHgCID7Oj0olz2CK98zRGQngA8AeMOtFw50EIjI\nDgC/A+Bhr8fSCSLSD+AAgK9b8HL7AAAC60lEQVQAgKqWVTXn7ahcFwXQIyJRACkAb3o8Hleo6mEA\nc5c9/GEAX6v+99cA/G5HB+Witd6vqv5AVa3qb58GsKPjA3PROv8fA8BfAfgsANdu6AY6CAD8NZy/\nwIrXA+mQvQBmAfxd9XLYwyLS6/Wg3KKqpwH8JZxPSmcAXFDVH3g7qo66SlXPAED11xGPx9NJHwPw\nPa8H4TYR+RCA06r6czdfJ7BBICJ3Asiq6vNej6WDogDeBeBvVfWdAJYRrMsFq1SviX8YwB4A1wLo\nFZE/8XZU5DYR+QIAC8A3vB6Lm0QkBeALAO53+7UCGwQAbgXwIRF5DcCjAA6KyNe9HZLrTgE4parP\nVH//GJxgCKr3AzihqrOqagL4DoD3ejymTvq1iFwDANVfsx6Px3UicjeAOwH8sQZ/7vv1cD7k/Lx6\nHNsB4AURubrdLxTYIFDV+1R1h6ruhnMD8ZCqBvrToqqeBXBSRDLVh94H4JceDsltbwB4j4ikRETg\nvN/A3hxfw+MA7q7+990AvuvhWFwnIh8E8DkAH1LVvNfjcZuqvqyqI6q6u3ocOwXgXdWf87YKbBCE\n2CcAfENEXgLwDgD/w+PxuKZ65vMYgBcAvAzn33MgV5+KyDcB/ARARkROicifAfgygA+IyFE4s0q+\n7OUY22md9/s3ALYAeEJEfiYi/8fTQbbZOu+5M68d/LMrIiLaCM8IiIhCjkFARBRyDAIiopBjEBAR\nhRyDgIgo5BgEREQhxyAgIgo5BgFRC0Tk5movflJEeqt7Itzo9biIWsEFZUQtEpH/BiAJoAdOx9Of\nezwkopYwCIhaJCJxAM8CKAJ4r6raHg+JqCW8NETUuiEAfXD6bwK5RSaFA88IiFokIo/DqTjfA+Aa\nVf24x0MiaknU6wEQ+ZGI/CkAS1X/XkQiAJ4SkYOqesjrsRE1i2cEREQhx3sEREQhxyAgIgo5BgER\nUcgxCIiIQo5BQEQUcgwCIqKQYxAQEYUcg4CIKOT+P16htkyk8GiNAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot Anscombe 3\n",
"sns.regplot(x = \"x\", y = \"y\", data = anscombe_3)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Split the data in half into fold 1 and fold 2\n",
"X_fold1, X_fold2, y_fold1, y_fold2 = train_test_split(anscombe_3[[\"x\"]], anscombe_3[\"y\"], test_size=0.5)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" x | \n",
"
\n",
" \n",
" \n",
" \n",
" 25 | \n",
" 9.0 | \n",
"
\n",
" \n",
" 31 | \n",
" 7.0 | \n",
"
\n",
" \n",
" 28 | \n",
" 6.0 | \n",
"
\n",
" \n",
" 29 | \n",
" 4.0 | \n",
"
\n",
" \n",
" 22 | \n",
" 10.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" x\n",
"25 9.0\n",
"31 7.0\n",
"28 6.0\n",
"29 4.0\n",
"22 10.0"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X_fold1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use the training data to fit the linear model using the sci-kit learn version:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use this linear model to make predictions for the fold 2 data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compute the mean squared error for the fold 2 predictions:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's do the reverse. Use the fold2 data to create the linear model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use this linear model to make predictions for the fold 1 data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compute the mean squared error for the fold 1 predictions:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"How do the two mean squared errors compare? What might be happening here?\n",
"\n",
"To better understand whaat's happening, let's plot the two training data sets using `regplot()` in Seaborn. \n",
"\n",
"First plot the fold 1 data, where x is `X_fold1[\"x\"]` and y is `y_fold1`."
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VPW9//HXN/sCgUAIWwgQCEkI\nFZe4ohRFlDV089be9rZqW2nrUtvaVutCgq211Xpra1u0tb2219rr9WoNi7gjWndU1GwQwha2EMKS\nfZl8fn/MOD9KUZZkcmaS9/PxyCPJmcPMex6BvDnL5xxnZoiIiABEeR1ARETCh0pBRESCVAoiIhKk\nUhARkSCVgoiIBKkUREQkSKUgIiJBKgUREQlSKYiISFCM1wGOV1pamo0bN87rGCIiEWXt2rV1Zjbs\naOtFXCmMGzeOt956y+sYIiIRxTm35VjW0+4jEREJUimIiEiQSkFERIJUCiIiEqRSEBGRIJWCiIgE\nqRRERCQo4uYURETk2LW0+1j64sZjXl+lICLSB5kZT36wix+vKGPH/tZj/nMqBRGRPqZyVwNFJaW8\nWr0XgNhod8x/NmTHFJxzOc65dw/5OOicu+6wdWY45w4css6tocojItLXHWjuoKiklLm/eilYCDPz\n0nn2u5885ucI2ZaCmVUCJwM456KB7cDjR1j1JTObH6ocIiJ9na/LeOStbdy5qpL65nYAxqclc+uC\nyZyfk35cz9Vbu49mAhvN7JguyCQiIsdm7ZZ6FpeU8sH2gwAkxUVz3YXZXHbOeOJijn9nUG+VwqXA\nwx/x2NnOuXXADuB6MyvtpUwiIhFr98FW7niygsff2R5c9plTR3PD7FzSUxJO+HlDXgrOuTigELjx\nCA+/DYw1s0bn3Fzg70D2EZ7jSuBKgMzMzBCmFREJL6srarlvTTXb9jUzJjWJK6aNY2NdE79+bgNN\n7T4ApoxOobhwCqeNTe326zkz6/aTfOwLOLcQuMrMLjqGdTcDBWZW91HrFBQUmO6nICL9weqKWm4t\nKSU22pEYG01dYxt1je10dvl/b6cmxfKD2bn8W8EYoqM+/gwj59xaMys42mv2xu6jL/ARu46ccyOA\n3WZmzrkz8J8NtbcXMomIhL371lQTG+2IjnJsqW+mobUz+Njl08Zx3cxJDEqK7dHXDGkpOOeSgFnA\nokOWfQPAzJYCnwO+6ZzrBFqASy3Umy4iIhFiS30T7Z1d7G1s58NfjMlx0QxIiGHxgvyQvGZIS8HM\nmoGhhy1besjX9wL3hjKDiEikMTNK1u2grqGNdp+/DmKjHSMHJRITBcNTEkP22ppoFhEJI6U7DlBc\nUsYbm+uDy1KTYhmZkkCbr4sOn7FoelbIXl+lICISBvY1tfOLZyr56+tbCRxHZnb+cGbmDuexd7ZT\ns6+ZjNQkFk3PYkbu8Q2kHQ+VgoiIh3xdxl9f38JdT6/nQEsHABOHDaCoMJ9zs9MAuOT0Mb2WR6Ug\nIuKR16v3UrSsjPKd/mnkAfExfGfWJL589lhio7253Y1KQUSkl+080MJPV1ZQsm4HAA64pCCDH8zO\nJW1AvKfZVAoiIr2ktcPHAy9v4t7nq2jp8E8jnzxmMMWF+UwdM9jjdH4qBRGREDMzniuv5bYVZWzZ\n2wxA2oA4bpiTx2dOGU3UUaaRe5NKQUQkhDbuaWTJsjJeXL8HgJgox+XTxnHtzGwGJvTsNHJPUCmI\niIRAQ2sHv36+ij++vCl4raJzJ6ZRVDiZiekDPU730VQKIiI9qKvLeOyd7dzxZDl1jf4b3oxJTeSW\n+ZOZNXk4zoXPrqIjUSmIiPSQ92r2s7iklHe27gcgMTaab82YwNenZ5EQG+1xumOjUhAR6aa6xjbu\nXFXJI2u38eElPeefNJIfzc1j1ODQXacoFFQKIiInqMPXxX+/toW7n1kfvKx1zoiBFBfmc1bW0KP8\n6fCkUhAROQGvVNVRtKyU9bsbARiUGMv3LprEv5+RSYxH08g9QaUgInIcttU3c/vKcp78YBcAzsGl\np2fy/YtzGJIc53G67lMpiIgcg9YOH0tf3MjvVm+krbMLgIKxqRQV5jNl9CCP0/UclYKIyMcwM1Z9\nsIsfryhn+/4WAIYPjOdH8/IonDoq7E8xPV4qBRGRj7B+dwPFy0r5R5X/1vGx0Y6vnZfF1edPJDm+\nb/767JvvSkSkGw60dHDPsxt48NXN+ALTyDNz07l5/mTGpyV7Gy7EVAoiIgFdXcb/rt3Gz1dVsrfJ\nP408bmgSixfkc34I73YWTlQKIiLA21v3UVRSyns1BwBIiovm2pnZXDFtPHExkXuK6fFSKYhIv1bb\n0MrPnqzk/96uCS779CmjuWFOLsNTEjxM5g2Vgoj0S+2dXTz4ymbueW4DjW3+aeT8USkUF+ZTMG6I\nx+m8o1IQkX7nxfV7KF5WSvWeJgBSk2L5/sW5fP70MUSH0Q1vvKBSEJF+Y8veJm5bXs6z5bsBiHLw\npbPG8t1ZkxicFPnTyD1BpSAifV5zeye/eaGK36/ZRLvPP418VtYQigrzyR2R4nG68KJSEJE+aXVF\nLUtf3Mj62gYaW33BMhg5KIGb501m7idG9Llp5J6gUhCRPmd1RS03PPY++1vaae3oCi5fOHUUd3z2\nJBLjIuOGN15QKYhIn7K/uZ0fPvYeuw+2BZelJMQwOCmW2oY2FcJRqBREpE/wdRkPv7GVu56qZH9L\nBwDxMVGMHJTAwIRYzIyafc0epwx/KgURiXhvbq5n8ROllO08CPjPKkpNimPEoASiAscNWjp8ZKQm\neRkzIqgURCRi7TrQyh1PlvP3d3cEl11yWgbTJqRx97Prae3wkRgbTUuHjw6fsWh6lodpI4NKQUQi\nTlunjwde3sS9z1fR3O4DYGrGIIoK8zklMxWAwUmx3Lemmpp9zWSkJrFoehYz+slF7bpDpSAiEeW5\n8t0sWV7Glr3+4wNDk+O4YU4unz01g6hDppFn5KarBE5AyErBOZcD/M8hi7KAW83sl4es44B7gLlA\nM3CZmb0dqkwiErmq9zRy2/IyXqjcA0BMlOOyc8Zx7YXZpCTEepyu7whZKZhZJXAygHMuGtgOPH7Y\nanOA7MDHmcDvAp9FRABobOvk189v4I8vb6LD57/hzbkT0ygqnMzE9IEep+t7emv30Uxgo5ltOWz5\nQuDPZmbAa865wc65kWa2s5dyiUiYMjMef2c7dzxZQW2Df+YgIzWRm+flcXG+ppFDpbdK4VLg4SMs\nHw1sO+T7msAylYJIP/bB9gMsLill7ZZ9ACTERvGtGRO5cnoWCbEaPgulkJeCcy4OKARuPNLDR1hm\nR3iOK4ErATIzM3s0n4iEj/qmdu58qpK/vbkVC/wmmHfSSH40N4/RgxO9DddP9MaWwhzgbTPbfYTH\naoAxh3yfAew4fCUzux+4H6CgoOBfSkNEIlunr4uHXt/KL56u5GCr/4Y3OcMHsLgwn3MmpHmcrn/p\njVL4AkfedQRQAlztnPsb/gPMB3Q8QaR/eWVjHcUlZVTubgD81yn63kU5fPHMTGKi+8+9kcNFSEvB\nOZcEzAIWHbLsGwBmthRYif901Cr8p6ReHso8IhI+tu9v4fYV5ax43///QOfg0tMzuf6iSQwdEO9x\nuv4rpKVgZs3A0MOWLT3kawOuCmUGEQkvrR0+7l9TzW9XVwUva31q5mCKC6fwiYxBHqcTTTSLSK8w\nM54q3c2PV5RRs68FgPSB8dw4N5dPnTxap5iGCZWCiIRcVW0DRSVlvFxVB0BstOOKc8dzzQXZDIjX\nr6Fwop+GiITMwdYO7nl2Aw++spnOLv+JgzNyhnHr/MlkDRvgcTo5EpWCiPS4ri7j0bdr+NmqCvY2\ntgMwdmgSt86fzMy84R6nk4+jUhCRHvXutv0sLill3bb9ACTFRXPNBdlcce444mM0jRzuVAoi0iP2\nNLTx81UV/O/amuCyT508ihvm5DFiUIKHyeR4qBREpFs6fF08+Mpm7nl2Aw1t/mnkySNTKF6Yz+nj\nhnicTo6XSkFETthLG/ZQVFLKxj1NAAxOjOX6i3P4whmZREfpFNNIpFIQkeO2rb6Z25aX8XSZ/5Jm\nUQ6+dNZYvjtrEoOT4jxOJ92hUhCRY9bS7uN3q6tYuqaa9k7/NPIZ44dQtCCfyaNSPE4nPUGlICJH\nZWaseH8nt68oZ8eBVgBGDErgprl5zD9ppKaR+xCVgoh8rIpdBykqKeW16nrAP428aPoEvnX+BJLi\n9Cukr9FPVESO6EBzB3c/U8lfXttCYBiZWZOHc/O8PMYOTfY2nISMSkFE/omvy/ifN7dx51MV7Gvu\nACArLZlbF0xmRk66x+kk1FQKIhL01uZ6FpeUUrrjIADJ8dFcN3MSXzlnHHExuuFNf6BSEBF2H2zl\njicrePyd7cFlnzl1NDfMziU9RdPI/YlKQaQfa+v08ceXN/Pr5zfQ3O4D4BOjUygqnMJpY1M9Tide\nUCmI9FMvVNSyZHkZm+r808hDkuP44ewcLjltDFGaRu63VAoi/czmuiaWLC/j+YpaAKKjHF8+eyzX\nXTiJQYmxHqcTr6kURPqJprZO7n2higde2kS7zz+NfM6EoRQV5jNp+ECP00m4UCmI9HFmRsm6Hdy+\nspzdB9sAGD04kVvm53Fx/ghNI8s/USmI9GEfbD9A8bJS3ty8D4D4mCi+OWMCi6ZPIDFON7yRf6VS\nEOmD6pvauevpSh5+YysWmEaeM2UEN83LIyM1ydtwEtZUCiJ9SKevi7++sZVfPL2eAy3+aeTs9AEU\nFeYzbWKax+kkEqgURPqIVzfupXhZKRW7GgAYmBDDdy6cxH+cPZbYaE0jy7FRKYhEuB37W7h9ZTnL\n39sJgHPw+YIxXH9xDmkD4j1OJ5FGpSASoVo7fPx+TTW/WV1Fa4f/FNOTxwymuDCfqWMGe5xOIpVK\nQSTCmBnPlO3mthVlbKtvAWDYwHhumJ3Lp08ZrWlk6RaVgkgEqaptpHhZKS9tqAMgJspxxbnjueaC\niQxM0DSydJ9KQSQCNLR28KvnNvCnf2ymM3DHm+mThrF4wWQmDBvgcTrpS1QKImGsq8t47J3t3PFk\nBXWN/mnkzCFJ3Dp/MjPz0jWNLD1OpSASptZt28/iklLe3bYfgMTYaK6+YCJfPXc8CbGaRpbQUCmI\nhJm6xjbuXFXJI2u3BaeRF0wdxY/m5jJyUKK34aTPUymIhIkOXxd/fnULv3x2PQ2tnQDkjhhIcWE+\nZ2YN9Tid9BcqBZEw8I+qOopKStlQ2wjA4MRYvndxDl84fQwxmkaWXhTSUnDODQb+AEwBDLjCzF49\n5PEZwBPApsCix8xsSSgziYSTbfXN/GRFOatKdwEQ5eDfz8zke7NySE2O8zid9Eeh3lK4B1hlZp9z\nzsUBR7o840tmNj/EOUTCSku7j6UvbmTpixtp6/RPI58+LpWiwnzyRw3yOJ30ZyErBedcCjAduAzA\nzNqB9lC9nkgkMDOe/GAXP1lRzvb9/mnkESkJ3Dg3l8Kpo3SKqXgulFsKWcAe4E/OuanAWuDbZtZ0\n2HpnO+fWATuA682s9PAncs5dCVwJkJmZGcLIIqFTuauB4mWlvLJxLwCx0Y6vn5fFVedPJDleh/ck\nPDj78Jy3nn5i5wqA14BpZva6c+4e4KCZ3XLIOilAl5k1OufmAveYWfbHPW9BQYG99dZbIcksEgoH\nWjr4z2fW85fXtuALTCNfmJfOzfMmMy4t2eN00l8459aaWcHR1gvlf09qgBozez3w/aPADYeuYGYH\nD/l6pXPut865NDOrC2EukV7R1WU88tY2fv5UJfVN/j2n44Ymsbgwn/Nz0j1OJ3JkISsFM9vlnNvm\nnMsxs0pgJlB26DrOuRHAbjMz59wZQBSwN1SZRHrL2i37KCop5f3tBwBIjovm2pnZXD5tPHExOsVU\nwleod2ReAzwUOPOoGrjcOfcNADNbCnwO+KZzrhNoAS61UO3PEgmh1RW13Lemms17m+j0GXsC1ykC\n+Mwpo7lhTi7pKQkeJhQ5Nkc9puCcuxp4yMz29U6kj6djChJuVlfUcssTH9DU3sn+5g4Chw0YOzSJ\nu/9tKqeNHeJtQBGO/ZjCsWzHjgDedM494pyb7XTOnMg/uWNVBbsOtlLf5C+E6CjHsAFxjExJUCFI\nxDlqKZjZzUA28AD+mYMNzrnbnXMTQpxNJKxtrmviaw++ScWuBjp8/s2Doclx5AwfyPCUhOAcgkgk\nOaZjCoEDwbuAXUAnkAo86px7xsx+EMqAIuGmqa2T366u4vdrNtHu808jJ8RGMSY1KXhJ6+b2TjJS\njzTALxLejloKzrlrga8AdfivY/R9M+twzkUBGwCVgvQLZkbJuh38dKV/dxHAqMEJfPrk0ZSs20GX\nGWZGS4ePDp+xaHqWx4lFjt+xbCmkAZ8xsy2HLjSzLuecrlkk/ULZjoMUlZTyxuZ6AOJiovjG9Cy+\nOWMiiXHRnD5uCPetqaZmXzMZqUksmp7FjFzNIkjkCdlEc6jo7CPpTfua2rn7mfU89PqW4FlFs/NH\ncNO8PMYM0e4hiRzhMNEsErF8XcZf39jKL56qZH9LBwAT0wdQtCCfc7PTPE4nEjoqBZHDvF69l6Jl\nZZTv9F+FZUB8DN+ZNYkvnz2WWN3wRvo4lYJIwM4DLfx0ZQUl63YEl11yWgY/mJ3LsIHxHiYT6T0q\nBen3Wjt8PPDyJu59voqWDh8AUzMGUbxwCiePGexxOpHepVKQfsvMeK68liXLy9ha3wz4h89umJPL\nZ0/NICpKw/vS/6gUpF/auKeRJcvKeHH9HgBiohyXnTOOay/MJiUh1uN0It5RKUi/0tjWya+f28Af\n/7EpeGmK87LTWLxgMhPTB3qcTsR7KgXpF7q6jL+/u52fPlnBngb/Za3HpCZyy/zJzJo8XPdGFglQ\nKUif937NARaXfMDbW/cD/usUXTVjIl+fnhW8VpGI+KkUpM/a29jGXU9X8rc3t/Hh4P78k0byo7l5\njBqc6G04kTClUpA+p9PXxV9e28Ldz6ynobUTgEnDB1BcOIWzJwz1OJ1IeFMpSJ/ySlUdRctKWb+7\nEYCUhBi+d1EOXzwzkxhNI4sclUpB+oSafc3cvrKcle/vAsA5+MIZmVx/UQ5DkuM8TicSOVQKEtFa\nO3zc92I1v3uxitYO/w1vCsamUlSYz5TRgzxOJxJ5VAoSkcyMp0p3cdvy8uBtL9MHxvOjuXksPHmU\nTjEVOUEqBYk4G3Y3ULysjJer6gCIjXZ87bwsrjp/IgPi9VdapDv0L0gixsHWDn75zAYefHUzvsAd\nby7IGcYtC/IZn5bsbTiRPkKlIGGvq8t4dG0NP3+qgrrGdgDGDk1i8YLJXJA73ON0In2LSkHC2jtb\n91FUUsq6mgMAJMVFc/UFE/nqueOJj9E0skhPUylIWKptaOXnqyp5dG1NcNmnTh7FjXPzGJ6S4GEy\nkb5NpSBhpb2ziwdf2cw9z22gsc0/jZw/KoXiwnwKxg3xOJ1I36dSEM+srqjlvjXVbNvXzJjUJKZN\nGMrj725n454mAAYnxfKDi3P5/OljiNYNb0R6hUpBPLG6opZbS0qJjXYkxUazrmY/r1bvBSDKwZfO\nGst3Z01icJKmkUV6k0pBPHHfmmqio+Bgayd1DW0ELmLKwIQYHll0NnkjUzzNJ9JfqRSk15kZlbsP\ncrClk87AvEFMlGPkoATMTIUg4iGVgvSq8p0HKSoppb6pAwAHpA2MJ31APK2dPtIH6swiES+pFKRX\n7G9u5+5n1vPfr20hsHFAYmwUwwbGk5IQS0uHjw6fsWh6lrdBRfo5lYKElK/L+NubW7nrqUr2Nfu3\nDrLSkikqzKery7hvTTU1+5rJSE1i0fQsZuSme5xYpH8LaSk45wYDfwCmAAZcYWavHvK4A+4B5gLN\nwGVm9nYoM0nveXNzPYufKKVs50EAkuOjuW7mJL5yzjjiYvw3vFEJiISXUG8p3AOsMrPPOefigKTD\nHp8DZAc+zgR+F/gsEWzXgVZ++mQ5T7y7I7jsktMy+P7sHB0zEAlzISsF51wKMB24DMDM2oH2w1Zb\nCPzZzAx4zTk32Dk30sx2hiqXhE5bp48HXt7Evc9X0dzuA+CkjEEUF+ZzSmaqx+lE5FiEckshC9gD\n/Mk5NxVYC3zbzJoOWWc0sO2Q72sCy/6pFJxzVwJXAmRmZoYwspyo58p3s2R5GVv2NgMwJDmOG2bn\n8rnTMojSNLJIxAhlKcQApwLXmNnrzrl7gBuAWw5Z50i/LexfFpjdD9wPUFBQ8C+Pi3eq9zRy2/Iy\nXqjcA0C0c3zlnHF8+8JsBiXGepxORI5XKEuhBqgxs9cD3z+KvxQOX2fMId9nADuQsNfY1sm9z1fx\nwMvVdPj8PX3OhKEUF+aTPXygx+lE5ESFrBTMbJdzbptzLsfMKoGZQNlhq5UAVzvn/ob/APMBHU8I\nb2bGE+/u4PaV5dQ2tAGQMTiRm+dP5uL84bo3skiEC/XZR9cADwXOPKoGLnfOfQPAzJYCK/GfjlqF\n/5TUy0OcR7rhg+0HWFxSytot+wBIiI3iWzMmcuX0LBJidcMbkb4gpKVgZu8CBYctXnrI4wZcFcoM\n0n31Te3c+VQlf3tzKxY4ojNnyghumpdHRurhZxmLSCTTRLN8pE5fFw+9vpVfPF3JwVb/DW+y0wdQ\nXJjPORPTPE4nIqGgUpAjenXjXoqXlVKxqwHwX9L6u7Mm8R9njSUmOsrjdCISKioF+Sfb97dw+8py\nVrznP97vgM+fPobvX5zD0AHx3oYTkZBTKQgArR0+7l9TzW9XV9Ha0QXAKZmDWVI4hU9kDPI4nYj0\nFpVCP2dmPF22mx+vKGNbfQsAwwbEc+PcXD59ymidYirSz6gU+rGq2gaKl5Xx0oY6wH/3s6+eO55r\nZmYzIF5/NUT6I/3L74cOtnbwq2c38F+vbA7eDnP6pGEsXjCZCcMGeJxORLykUuhHurqMR9+u4eer\nKqhr9F+wdkxqIosX5DMzL127ikREpdBfvLttP4tLSlm3bT/gvxXm1Rdk89Vzx2saWUSCVAp93J6G\nNu58qoJH3qoJLpt/0khumpfHyEGJHiYTkXCkUuijOnxdPPjKZu55dgMNbf5p5NwRA1mycApnjB/i\ncToRCVcqhT7opQ17KF5WRlVtIwCDEmO5/uIc/v2MTKJ1wxsR+RgqhT5kW30zP15RxlOluwGIcvDF\nM8fyvYsmMTgpzuN0IhIJVAp9QEu7j9+trmLpmmraO/3TyKePS6W4cAqTR6V4nE5EIolKIYKZGSvf\n38VPVpSx40ArACNSErhpXh7zTxqpU0xF5LipFCJUxa6DFJWU8lp1PQCx0Y6vn5fF1RdMJClOP1YR\nOTH67RFhDjR38J/Prucvr23BF5hGvjAvnVvmT2bs0GSP04lIpFMpRAhfl/HIW9u486lK6pv808jj\nhiZRVJjPjJx0j9OJSF+hUogAa7fUU1RSxvvbDwCQHBfNty/M5rJzxhMXoxveiEjPUSmEsdqDrdzx\nZAWPvbM9uOyzp47mh7NzSU9J8DCZiPRVKoUw1N7ZxZ/+sYlfPbeBpnYfAFNGp7Bk4RROzUz1OJ2I\n9GUqhTDzQmUtty0ro7quCYAhyXH8cHYOl5w2hihNI4tIiKkUwsTmuiZuW17GcxW1AEQ7x3+cPZbv\nzJrEoMRYj9OJSH+hUvBYU1snv3mhit+/VE2Hz3+K6dlZQylemM+k4QM9Tici/Y1KwSNmRsm6Hfx0\nZQW7DvqnkUcOSuCW+ZOZM2WEppFFxBMqBQ+U7jhAUUkpb27eB0B8TBTf/OQEFn1yAolxuuGNiHhH\npdCL9jW1c9fTlTz8xlYCw8hcnD+cW+ZPJiM1ydtwIiKoFHpFp6+Lh9/Yyl1Pr+dASwcAE4cNoHhh\nPtMmpnmcTkTk/1MphNhr1XspKimlYlcDAAPjY7hu1iS+fPZYYqM1jSwi4UWlECI79rdw+8pylr+3\nEwAHXFKQwQ9m55I2IN7bcCIiH0Gl0MNaO3z84aVqfvPCRlo6/NPIUzMGsWThFKaOGexxOhGRj6dS\n6CFmxrPltdy2vIyt9c0ADE2O48a5eXzmlNGaRhaRiKBS6AEb9zSyZFkZL67fA0B0lOOKaeO4dmY2\nAxM0jSwikUOl0A0NrR38+vkq/vjyJjoD55iel53G4gX5TEwf4HE6EZHjF9JScM5tBhoAH9BpZgWH\nPT4DeALYFFj0mJktCWWmntDVZTz2znbueLKcukb/DW/GpCZy64J8LsxL1zSyiESs3thSON/M6j7m\n8ZfMbH4v5OgR79XsZ3FJKe9s3Q9AQmwUV58/ka+dl0VCrKaRRSSyaffRMaprbOPOVZU8snYbFphG\nnveJkdw0L49RgxO9DSci0kNCXQoGPO2cM+A+M7v/COuc7ZxbB+wArjez0sNXcM5dCVwJkJmZGcq8\n/6LD18VfXt3Cfz67nobWTgAmDR/AkoVTOCtraK9mEREJtVCXwjQz2+GcSweecc5VmNmaQx5/Gxhr\nZo3OubnA34Hsw58kUCb3AxQUFFiIMwf9o6qOopJSNtQ2ApCSEMP3LprEF88cS4ymkUWkDwppKZjZ\njsDnWufc48AZwJpDHj94yNcrnXO/dc6lHeUYRMhtq2/mJyvKWVW6C/BPI3/hjEyuvziHIclxXkYT\nEQmpkJWCcy4ZiDKzhsDXFwFLDltnBLDbzMw5dwYQBewNVaajaWn3sfTFjSx9cSNtnV0AnDY2leLC\nfKaMHuRVLBGRXhPKLYXhwOOB0zNjgL+a2Srn3DcAzGwp8Dngm865TqAFuNTMem330IfMjFUf7OK2\nFWXs2O+/4U36wHhumpdH4dRROsVURPqNkJWCmVUDU4+wfOkhX98L3BuqDMdi/e4GikpKeWWjfwMl\nNtrxtXOzuPqCiSTH6+QsEelf+u1vvQMtHfzy2fX8+dUt+ALTyDNyhlG0IJ9xackepxMR8Ua/KYXV\nFbXct6aarfVNxMdEs6exLXiK6dihSRQtyOf83HSPU4qIeKtflMLqilpuLSnF19VFfVM7LR3+g8jx\nMVFcd2E2Xz03i7gYnWIqItIvSuHXz1exr6mdhrbO4LIB8dHkDE/hmzMmephMRCS89OlSaO/s4r9e\n2cTbW/fx4SlNCTFRjBqcSFJUCPvmAAAGEElEQVRcNLUNrZ7mExEJN322FFZX1lK8rIxNdU0ARDkY\nkZLAkOQ4nHM0t3eSkZrkcUoRkfDS50phy94mbltezrPluwGIdo4ZOcOo3NVAfKz/uEFzeycdPmPR\n9Cwvo4qIhJ0+UwrN7Z389oWN3P9SNe2BaeQzxg9hycJ8ckekBM8+qtnXTEZqEoumZzFDZxuJiPyT\niC8FM2P5ezu5fWU5Ow/4jxGMSEng5vl5zPvEyOA08ozcdJWAiMhRRHQplO04SNGyUt7YVA9AXHQU\niz6ZxbdmTCQxTje8ERE5XhFZCvua2rn7mfU89PoWAsPIzMobzq0LJjNmiA4ei4icqIgrhfqmds6/\nazX7WzoAGJ+WzJKF+ZyXPczjZCIikS/iSmH7/ha6WjpIjovm2xdmc/m08cTqhjciIj0i4koB4LOn\njuaHc3JJH5jgdRQRkT4l4kphwrAB/OLfTvY6hohInxRx+12SdFaRiEjIRFwpiIhI6KgUREQkSKUg\nIiJBKgUREQlSKYiISJBKQUREglQKIiISpFIQEZEgZ2ZHXyuMOOf2AFu68RRpQF0PxfFSX3kfoPcS\njvrK+4C+8166+z7GmtlRrxwacaXQXc65t8yswOsc3dVX3gfovYSjvvI+oO+8l956H9p9JCIiQSoF\nEREJ6o+lcL/XAXpIX3kfoPcSjvrK+4C+81565X30u2MKIiLy0frjloKIiHyEflUKzrlo59w7zrnl\nXmfpDufcZufc+865d51zb3mdpzucc4Odc4865yqcc+XOubO9znS8nHM5gZ/Fhx8HnXPXeZ3rRDnn\nvuOcK3XOfeCce9g5F5G3OHTOfTvwHkoj7efhnPujc67WOffBIcuGOOeecc5tCHxODcVr96tSAL4N\nlHsdooecb2Yn94FT7e4BVplZLjCVCPz5mFll4GdxMnAa0Aw87nGsE+KcGw1cCxSY2RQgGrjU21TH\nzzk3Bfg6cAb+v1fznXPZ3qY6Lv8FzD5s2Q3Ac2aWDTwX+L7H9ZtScM5lAPOAP3idRfyccynAdOAB\nADNrN7P93qbqtpnARjPrzoCl12KAROdcDJAE7PA4z4nIA14zs2Yz6wReBD7tcaZjZmZrgPrDFi8E\nHgx8/SDwqVC8dr8pBeCXwA+ALq+D9AADnnbOrXXOXel1mG7IAvYAfwrs1vuDcy7Z61DddCnwsNch\nTpSZbQfuArYCO4EDZva0t6lOyAfAdOfcUOdcEjAXGONxpu4abmY7AQKf00PxIv2iFJxz84FaM1vr\ndZYeMs3MTgXmAFc556Z7HegExQCnAr8zs1OAJkK0SdwbnHNxQCHwv15nOVGB/dQLgfHAKCDZOfcl\nb1MdPzMrB34GPAOsAtYBnZ6GihD9ohSAaUChc24z8DfgAufcf3sb6cSZ2Y7A51r8+67P8DbRCasB\naszs9cD3j+IviUg1B3jbzHZ7HaQbLgQ2mdkeM+sAHgPO8TjTCTGzB8zsVDObjn9XzAavM3XTbufc\nSIDA59pQvEi/KAUzu9HMMsxsHP7N++fNLOL+9wPgnEt2zg388GvgIvybyhHHzHYB25xzOYFFM4Ey\nDyN11xeI4F1HAVuBs5xzSc45h/9nEnEH/wGcc+mBz5nAZ4j8n00J8JXA118BngjFi8SE4kklpIYD\nj/v/vRID/NXMVnkbqVuuAR4K7HqpBi73OM8JCey3ngUs8jpLd5jZ6865R4G38e9ueYfInQj+P+fc\nUKADuMrM9nkd6Fg55x4GZgBpzrkaYDFwB/CIc+6r+Mv7kpC8tiaaRUTkQ/1i95GIiBwblYKIiASp\nFEREJEilICIiQSoFEREJUimIiEiQSkFERIJUCiLd5Jw73Tn3nnMuITBxXhq4dLNIxNHwmkgPcM79\nGEgAEvFfz+mnHkcSOSEqBZEeELhMx5tAK3COmfk8jiRyQrT7SKRnDAEGAAPxbzGIRCRtKYj0AOdc\nCf7Lso8HRprZ1R5HEjkhukqqSDc5574MdJrZX51z0cArzrkLzOx5r7OJHC9tKYiISJCOKYiISJBK\nQUREglQKIiISpFIQEZEglYKIiASpFEREJEilICIiQSoFEREJ+n86sFQ0eOFPhAAAAABJRU5ErkJg\ngg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next plot the fold 2 data, where x is `X_fold2[\"x\"]` and y is `y_fold2`."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X1sHPeZH/Dvs2/cF3J3SUkUJS5l\nWY4jWZaoSyqn6R3gGklTGK2RFMXdwUHTc5O0MnC4xD30mpem5wCHog1wh14NBOhFlxenPTe+1L30\n/Ed7jRHXMIpLHL8kpN5s6yzbIilSpCRyX7ivM/P0jxkuX3Ylvu3M7Mv3AwQSlyPOzxNpvjO/l+cn\nqgoiIupdAb8bQERE/mIQEBH1OAYBEVGPYxAQEfU4BgERUY9jEBAR9TgGARFRj2MQEBH1OAYBEVGP\nC/ndgK3Yu3evHj582O9mEBF1lNdff/2Gqu7b7LiOCILDhw/jtdde87sZREQdRUTe38pxrnUNich3\nRWReRM43+d7viYiKyF63zk9ERFvj5hjB0wAe3vihiIwB+ASAqy6em4iItsi1IFDVlwHcavKtPwbw\nJQAse0pE1AY8nTUkIp8EMKOqE1s49oyIvCYiry0sLHjQOiKi3uRZEIhIHMDXADy5leNV9ayqnlbV\n0/v2bTroTUREO+TlG8E9AO4GMCEi7wHIAHhDREY8bAMREW3g2fRRVT0HYHjlaycMTqvqDa/aQERE\njdycPvoDAD8FcFREpkXk826di4iIds61NwJV/fQm3z/s1rmJiHpZuWaiUrO2fHxHrCwmIqI7U1Xk\nKwZypRqqhoVoOLjlP8sgICLqYDXTQq5UQ6FiwLR2tjyLQUBE1IGKVQO5koFi1dj1z2IQEBF1CMta\n7f6pmVsfA9gMg4CIqM1VDQvZUg3LFQOWtr46D4OAiKhNVQwTS0U7ANzEICAiajNVw8JSsYqCywGw\ngkFARNQmaqaFxWIVhbI3AbCCQUBE5DPDtLBUqiFfNqAujAFshkFAROQT01IsFavI+RQAKxgEREQ+\nyJZqWFyuujILaLsYBEREjpfenMe3Xr6CqcUixgbjePzBI3jo2PDmf3AbqoaFG4UKyjWzpT93Nzzd\noYyIqF299OY8nnz+AubzZaRjYczny3jy+Qt46c35lvx8w7Rwa7mKmaVSW4UAwCAgIgIAfOvlKwgH\nBfFICCL2r+Gg4FsvX9nVzy1VTVzPlXH1VhFLxaqvYwG3w64hIiIAU4tFpGPhdZ/FwkFMLxa3/bNU\nFYWKgaxTCbTdMQiIiACMDcYxny8jHlm9LZZqJjKD8S3/DNNSFMoGcuXW1gJyG7uGiIgAPP7gEdRM\nRbFqT+UsVg3UTMXjDx7Z9M8Wq0a9++fmcqWjQgDgGwEREQDgoWPD+APYYwXTi0VkNpk1VDMt5MsG\nCmUDhtVZN/6NGARERI6Hjg1vabpotljDzeWKBy3yBoOAiGiLVBUL+YpnxeC8wiAgItqCmmnheq7c\nEbOAtotBQES0iXYqB+EG12YNich3RWReRM6v+ewPReRNEZkUkR+JSNqt8xMR7ZZhWpjNlnCzUOna\nEADcnT76NICHN3z2AoATqjoO4G0AX3Xx/EREO6JqVwWdXiyhVG2vchBucC0IVPVlALc2fPZjVV0Z\nZfkZgIxb5yci2olCxcDUrRJudXFX0EZ+jhF8DsCf3+6bInIGwBkAOHTokFdtIqIeVTFM3CxU264g\nnBd8WVksIl8DYAB45nbHqOpZVT2tqqf37dvnXeOIqKeYlj0ldGax/aqCesXzNwIReQzAIwA+ru1Y\nho+Ieka5ZmI+V+n4lcG75WkQiMjDAL4M4O+q6vZL+hERtUi2WMOtNi0L7TU3p4/+AMBPARwVkWkR\n+TyAbwIYAPCCiPxSRP7ErfMTETWzsjDs5nKFIeBw7Y1AVT/d5OPvuHU+IqI7MUwLi8UaChV/N4pv\nR1xZTERdzTAtLJVqyJcZALfDICCirsQA2DoGARF1FdOyVwXnGABbxiAgoq5gWopsqYZcqdYzK4Jb\nhUFARB2NAbB7DAIi6khVw0K+bI8BMAB2h0FARB1DVVGoGMiXjZ4tB+EGBgERtb2qYSFXrmG5YsC0\n+PTfagwCImpLfPr3DoOAiNpKxTCRLxsosO/fMwwCIvKdZSkKVfvpv8Knf88xCIjIN+Wa/fS/XOHT\nv58YBETkKctS5CsG8uUaqkZv7wPQLhgEROSJcs10Zv6YLP3QZhgEROQa01IUygZy5RpqJp/+2xWD\ngIharlQ1kS/XsFzl038nYBAQUUvw6b9zMQiIaFf49N9+5rJlXJrNbfl4BgERbZthWvVVv3z695eq\nYnqxhMnpLCamlzA5ncV8vrKtn8EgIKItKzqLvop8+veNquK9m0VMTmcx6dz4by5XG45L9AW3/DMZ\nBER0R4ZpIV+2A8Cw+PTvNdNSXFkoYHImi4mpLM7NZJEt1RqOS0ZDOJlJ4VQmjVOZFI4fTOHQH2zt\nHAwCImqgqihWTefp3/C7OT3FMC1cni9gwnniPzeTxXKlsezGYDyMU5k0xjMpnBpL4649cQRE6t8P\nBqThz9yOa0EgIt8F8AiAeVU94Xw2BODPARwG8B6A31TVRbfaQETbU3Oe/gt8+vdM1bDw1lwekzNL\nmJjK4vy1LMq1xmu/r78Pp8ZSGHee+DODMYhs/WZ/J26+ETwN4JsA/suaz74C4Ceq+g0R+Yrz9Zdd\nbAMRbUJVsezM/ClVWfDNbZWaiYuzOeeJP4uLs7mmpTYOpKL2034mjVNjKYwkoy278W/kWhCo6ssi\ncnjDx58C8JDz++8DeAkMAiJfrGz1WOBmL64qVU2cv5atD+6+OZdHzWy83mODMZwas7t6xkdTGE5G\nPWuj12ME+1V1FgBUdVZEhj0+P1FP49O/+woVA+dnspiYWsLEdBZvX8+jWc4e2ZuoD+6OZ1IYSkS8\nb6yjbQeLReQMgDMAcOjQIZ9bQ9TZ+PTvnmyxZs/ocaZyvjNfwMYrHBDgA8P99a6ek6MpJGNhX9rb\njNdBcF1EDjhvAwcAzN/uQFU9C+AsAJw+fZp/c4m2iVs9uuPWchUTU0v1BVzv3Sw2HBMMCI7u78e4\n87R/YjSF/r62fe72PAieB/AYgG84v/6lx+cn6nrc6rG15nNlTKxZtTu9WGo4JhwUHBtJ2rN6RlO4\n/2AKscjWF3T5zc3poz+APTC8V0SmAXwddgD8UEQ+D+AqgN9w6/xEvcS07Kf/QoVbPe6GquJatlwf\n2J2YymIuV244ri8UwPGDSZxyunqOjQygL9w5N/6N3Jw19OnbfOvjbp2TqJesdP0sV0yUaiz5sBOq\niqlbpfoc/onpJdwoNJZriIWDODmarHf1HB0ZQDgY8KHF7mjfTisiaqpmWsiVOPC7E5Yq3ruxXJ/D\nPzm9hMViY7mG/r4QTo6mnFW7Kdw7PLCtlbqdhkFA1OZUFRXDQrFqP/mz62frTEvxzkKhPrh7biaL\nXLmxZEY6Frbn7zurdu/el1hXrqHbMQiI2pRhWsiV7U3e+eS/NYZp4a3reWdGTxbnZ7IoNlkvsScR\nqdfoGc+kcNdQ3LVVu52AQUDUZkrVlU3eWextM1XDwqW5nN3NM7WEC9dyKDcp17A/2Vd/2j+VSeNg\n2r1yDZ2IQUDUBixLka8YyJW4zeOdlGsmLl7L1adyXpzNNS3XMJqOOYu3UhgfS2PEw3INnYhBQOSj\nqmEhV65xzv9tLFcMXHBu/BNTWbx1Pd+0m+yuoTjGx1IYH7ULtO3t7/OhtZ2LQUDkg2LVQK7EWv8b\n5cs1nHM2YJmczuLyfGOdHgFwz75+Z3A3hZOZFAbj/tXp6QYMAiKPWJYiXzaQK7P7Z8VisYpzzlTO\nieklXFlYblqn597hgfpUzpOjKQxE26dOTzdgEBC5rGpYyJbswd9e7/65Uag4T/t2H//7txrr9IQC\ngqMjA3b/fiaNE6NJxCO8VbmJV5fIBSz3bJvLlTHplGOemF7CtaXGcg3hoOD4gaRdjnksheMHkoh2\ncLmGTsQgIGqhimFiuWL25FaPqoqZpZL9xO/U45/PVxqOi4YCuH9l1W4mhWMjSURC3VOuoRV+fuUW\nnn11CrO5Eg4kY3j0gTF85MjQbY8XEYQCgkgogHAwgHBQtnVNGQREu7B21e9yxeipvn9Vxfu3iuu6\nem4uN9bpSUSCOFG/8afxwf39CHVRnZ5W+/mVW3jqxcsIBQTJaAg3lyt46sXLeAL34qP37EE45Nzo\ngys3ffvr3ayLYBAQbdNKpc9S1US5ZvZMv7+lincXlu2pnM4Ab7bUWKcnGQ3h5JpyDffs6+/qOj2t\n9uyrUwgHBbFwCCLAQDSIUs3A//zlDB792+5s0sUgINqiYtXe5KVY7Y1Kn6aluDyfr0/lPDeTRaHJ\naufBeHh11e5YGnftifdUnZ7dWPtEHw4FEAkGsFAoYzAeWfeEn4iEMLPUuA9CqzAIiO5AVZEr98aK\n35pp4a25fH3V7vmZHEpNCtzt6++zN2BxnvrHBmMs13AHK/33fSv992u6dppdt0NDCczny+tmSpVq\nJjKDcdfayCAgaqJqWM42j91b8K1SM3FpLl/fZP3SbA6VJnV6DqSi6ypzHkixTk8zAZGm/ffbHQh/\n/MEjePL5CyhWDcTCQZRqJmqm4vEHj7jUcgYBEQB7sVfVtFA1LRS6dI/fUtXEhWtZp39/CW/O5ZvW\n6ckMxnAqk65vuzjMOj3rhAIBhEOyeqN3unZaNQD+0LFh/AGAb718BdOLRWQG43j8wSN46NhwS35+\nMwwC6ilrb/g1w0LNVNRMqyu7fQoVA+dnVlftvn290PTt5vCe+OqNP5PGUILlGgDUn+brffjOTT/g\nwcD3Q8eGXb3xb8QgoK5lmBYqxsr/TNQM7eq5/dlSDefWbLL+zkKhoU5PQFbr9JzKpHFyNIVUvHfL\nNYjI+q6cTfrvuxWDgLpKuWb2zJz+W8tVe4N1ZyrnuzeWG44JCHB0ZADjo/aMnhOjKfT39d4/+2Bg\nQ1fOmq4dYhBQhzNMC6WavYVjuWp19RP/fK7srNi1n/qnFxunE4aDgmMjA/VN1k8cTCEW6YxyDdtd\nTdtMs+mY4WCA6xg2wSCgjrRcsat4dmsdH1XFbLZcH9idnM5iNttYpycSCjh1euwn/vtGBtDXgXV6\n7rSadmMY3K6cQjjgTf99N/IlCETkdwH8cwAK4ByAz6pq499yojVMS5Ev15ArdV8dH1XF1GLJ7upx\nFnAtFBrr9MTCQdx/MIlTY3Yf/9GRga7o3nj21SmEAoKYE2KxcBBlw8QPX5/Cx44Pt7ScAjXyPAhE\nZBTAFwEcV9WSiPwQwKMAnva6LdQZyrWVPXy7Z0WvpYr3bxbrc/gnp5ewWGws15DoC+LkqH3TH8+k\n8MH9A13XzREMCObyJaSjYQQCAQgAEfttZyFfwfAAp6+6za+uoRCAmIjUAMQBXPOpHdSmLEtRqNor\neqtNFjl1GtNSvLNQqE/lPDedRa7cWK4hFQvXd946lUnj7r2Jrrnx36n//u49/fZq2tDqf2uxari6\nmpZWeR4EqjojIn8E4CqAEoAfq+qPvW4HtadS1UShYnT8Ji6GaeHt64X6rJ7zM1ksNxnP2JOI1Fft\njmdSOLwn3tHdHjudjunHalpa5UfX0CCATwG4G8ASgP8uIp9R1T/bcNwZAGcA4NAhdyruUXso11Zv\n/p1azqFqWHhzLlefynnhWhblWuObzPBAH06NpZ3pnCmMpv2v07OT2TqtKqewwo/VtLRKvO5zFZHf\nAPCwqn7e+fq3AHxUVX/7dn/m9OnT+tprr3nVRPJAuWbP9V+umB058Fuumbg4m8OkM5Xz4myuabmG\ng+movWo3k8L4WBojbVauYe1snWg4gHLNgmEpnviYPVvH7XIK5C4ReV1VT292nB9jBFcBfFRE4rC7\nhj4OgHf5HrBSyK0TF3sVqwbOz+TqXT1vzeVhNHl7uWsovq6rZ99Anw+t3bqV2TrxiF37vr8vgHLN\nxI9+MYPffGCM0zF7hB9jBK+IyHMA3gBgAPgFgLNet4O8UTMtLFcMFCpGRw365ss1nKvX6cni8vV8\nQ7kGADiyL1Gf0TOeSWEw3r51epr13y8UykjH7Nk6KxIBwbVsiSHQQ3yZNaSqXwfwdT/OTe5TVaeE\nc+dU8cwWa5iYWap39VxZWMbG+35AgHuHB+o3/ZOjKSRj7VunJx4JIRKy++0jt+m/X619v/o9t2vf\nU/vhymJqmXLNRL7cGTN+bhQqmJxercz5/s1iwzHBgODo/oH64q37DyaR6IA6Pf19IaTjkS0N3HK2\nDgEMAtqlimHWp3y2c9fPXK5s3/idBVzNtv0LBwX3rZRryKRx/GAS0Q4q15DoCyEdD6MvtPU2c7YO\nAQwC2iZVRcmp8Fmqmm056KuquLZUXrPJ+hKu5xrLNURDAdx/MGkP7I6lcN9IcsfTH/0Uj4QwmNhe\nAKzlde17aj+bBoGI/A6AZ1R10YP2UBuyLEXRme5Zqppt1+2jqrh6q4iJ6SwmppYwOZPFzUK14bh4\nJIgToyl7KqdTrqGT6/Qk+kJIxcId9dZC7WkrbwQjAF4VkTcAfBfA/9FuKfhCt6Wq9br+y9X2qvFj\nqeLdheV1lTmXSo11egaiIadOjz2d8wPD/R1frkFE0O8EQCe+vVB72jQIVPXfisjvA/j7AD4L4JtO\nobjvqOo7bjeQvNWOJR5MS/E384X6zlvnZrLIN6nTMxgP1+fvj2dSuHtvAoEOLtewViQUwEA0jIG+\nEKd1UsttaYxAVVVE5gDMwZ77PwjgORF5QVW/5GYDyX3tVuKhZlp4ay7vzOpZwvlrORSb1OnZ2x9Z\ns8l6GmND/pdraCURQaIviGSU3T/krq2MEXwRwGMAbgD4NoB/rao1EQkAuAyAQdCB2qnEQ9WwcGk2\nVx/cvXgth0qTGUgjyahz07fLNRxMRbvqxr+CT//kta28EewF8I9V9f21H6qqJSKPuNMsarW1s32K\nPt/8SzUTF2ay9W0X35xrXqcnMxirl2Mez6Swv83q9LRSQASJvhAGoiE+/ZPntjJG8OQdvneptc2h\nVjItRbFq1Kd6+tXnX6gYOO+Ua5icXsJb1wtNu6AO74mvK9ewp7+96/S0Ql84iIFoCP0RPv2Tf7iO\noMuUa/ZNv1gzUfGpvEOuZNfpmXC2XXxnodBQp0cA3LOvH+Nj9k1/fDSFdBvX6Wkl9v1Tu2EQdLiK\nYaJcs1CumSjXTF8GexeLVbtUw5Q9q+fKjeWGYwICfHD/AIb7+zC1WEKhWkN/XwgfuWto09r33SIg\ngmQsjGQ0xDLO1FYYBB2oZloolO2Knn6s7F3IV+rlmCens7h6q7FOTygguO/AQH0654mDKZybztZr\n36djYdxcruCpFy/jCdzb1WGwEgCpWLjj1zFQd2IQdIiqYaFYtRd3ednlo6qYy5Ux4VTlnJzOYjZb\nbjguEgrg+IGkM7ibwvEDSfRt6PZYqX0fcz5fKXL27KtTXRkEIoJk1C4AxwCgdsYgaFOqinLNqg/2\nevXkr6qYXiytW7U7n29SpyccwImDqfoc/qMjA5uudJ3NlZCMrv8rFw0HMJdrLADXyUQEA9EQ0rEw\nu4CoIzAI2oSqomKs9PXbv3oxy8dSxfs3i3ZXz5Q9pfPWcmOdnkRfECdH7VINpzIp3Dvcv+2b3IFk\nDDeXK/U3AgAo1yyMJGO7/u9oByvlHwbjDADqLAwCn1iWorxmoLdiWJ7U8zEtxZWFQr1/f3J6Cbkm\n5RqS0RBOOnP4T2VSOLJv93V6Hn1gDE+9eBmlmrluf9xHHxjb1c9tB/3REAbjkY4uYke9i0HgEcO0\nUDZWZ/d4VbvfMC1cni/Uu3rOzWSxXGkcYxhKROwVu5kUTo2lcdeeeMvr9HzkyBCewL149tUpzOVK\nGEnG8OgDYx09PrCdTWCI2hWDwCVVw3Ke+E1UapZnffxVw67TszKwe/5aFuVa47mHB/rWrdrNDHpT\np+cjR7pjuuhONoEhalcMghapGCbK1dWbv1fz+cs1Exdnc/Vunouz+aZvGwdS0XqBtlOZNEZS3Vuu\nwS0rC8HSMb4BUHdhEOxCxVjdo9erG3+xauDCtVx98dabc3kYTc59aChen8o5nklj30D3l2twSzAg\ndhG4aIhjANSVGATbZFmKQtVAvmx4Mp+/UDbq5Romp7N4+3q+oVwDABzZm6j3758cTWEo0RvlGtzU\nFw4iFQsjEQl2ZZVTohW+BIGIpGGXtD4BQAF8TlV/6kdbtmrl6b9QdnfDlmyxZlflnF7CpFOnZ+PZ\nAmLX6VmZw38yk0IqFnatTb0mFrG7f2IR9v9Tb/DrjeApAH+lqr8uIhEAcZ/acUc108JyxX76d2uw\n99Zytd7NMzG9hPduNpZrCAYER/cP1KtynhhNob+PL3OtFosEMRiPsBAc9RzP7yYikgTwIIB/BgCq\nWgXQuILJY1XDQtW07F8NCxXDnQHf67ly/aY/OZ3F9GLjqtpwUHBfvVxDGscPJtctwqLW6gsHMRTn\nGwD1Lj8eK48AWADwPRE5BeB1AE+oamPJShesrOBduelXDAs1w3Klu0dVcS1bxuTUaoG2uVxjnZ6+\nUAD3H0zWp3LedyDJWSkeCAcDGEpEkODbFfU4P/4FhAB8GMAXVPUVEXkKwFcA/P7ag0TkDIAzAHDo\n0KEdnci0dN0TfsVwdz6/quLqrWL9pj8xvYSbhcaXnXgkiBMHk3a5hrEUPrh/gLNRPBQKBDCYCGMg\nynEVIsCfIJgGMK2qrzhfPwc7CNZR1bMAzgLA6dOnN31cN0z76b5irHbv/PXf3MCzr05hNlfCARdW\nsVqqePfGslOjZwnnprNYLNYajhuIhpw6PXZXzweGd1+ugbYvGBCk4xEkoyHOAiJaw/MgUNU5EZkS\nkaOq+haAjwO4uN2fUzMtlGq3X7n78yu36rXvk9FQS2rfm5binYUCJpyunnMzWeSb1OlJx8LOwK5d\np+fufYmWl2ugrQuIIOXsB8DtIIka+dU5+gUAzzgzhq4A+Oxmf8Cy7M3XS85WjJt18bSi9r1hWnjr\net7p5sni/EwWxWrj2oE9/ZF6//6pTAqHhuJ84mwD3A+AaGt8CQJV/SWA01s9vmZaeP9WcVvVOXdS\n+75qWLg0l8PklF2u4cK1HMpNyjWMJKOrq3bH0jiYivLG30ZYDppoezpiuoSl2HaJ5q3Uvi/VTFy8\nlqtP5bw0m0PNbDxPZjC2rqtnf5J1etoVq4ESbV9HBMFONKt9XzUtfGgsjbMvX8Hk9BLeul5oulbg\nrj3xelfPeCaFvf2s09Pu4pEQBhOsBkq0E10bBB85MoR/Ub0b//VnVzGzVIaqXanzez99b91xAuDI\nvoR94x9LYXw0hXScdXo6RTQcxFCCq4GJdqOrgmCxWHXKMdtz+N9dWG5ap+fe/QMYH7X32z05muJ8\n8g4UCdmLweKRrvorTOSLjv5XdKNQsefwO338799qrNMTCgiOjQzUt108MZrkzaODhYMBDCYirLVE\n1EId869JVXE9V6kP7E5ML+HaUmO5hkgogOMHBjDu9PEfP5Bkt0EXCAUCSCfCGOjjYjCiVuuIIJjL\nlvDpP30F8/lKw/ei4QDuP2hP5TyVSePoyABnjHSRYGB1MRgDgMgdHREEubJRD4FEJIiTa6Zy3jvc\nz7niXSgggmQsjDRXAxO5riOCoL8vhN9+6B6cyqRwZB/r9HQzEcFANIRBrgYm8kxHBMHBdAy//rcy\nfjeDXNbvBAArsRJ5qyOCgLpbos8OAI7tEPmDQUC+4daQRO2BQUCe49aQRO2FQUCe4daQRO2J/yLJ\ndeFgAOk4t4YkalcMAnJNMCBIxyJIxrgamKidMQio5bg1JFFnYRBQy3BrSKLOxCCgXVtZDZyOcWtI\nok7EIKAdW9kbOB0PczUwUQdjENCOsBwEUfdgENC2cHN4ou7jWxCISBDAawBmVPURv9pBW5NwuoC4\nOTxR9/HzjeAJAJcAJH1sA22ivy+EFAOAqKv58n4vIhkA/xDAt/04P93ZyqYwmcE4hpNRhgBRl/Pr\njeA/AfgSgAGfzk9NhAIBJGMhDETDXAdA1EM8DwIReQTAvKq+LiIP3eG4MwDOAMDBzJhHretNfeEg\nUrEwEpEgS0EQ9SA/3gh+DcAnReQfAIgCSIrIn6nqZ9YepKpnAZwFgJO/8mH1vpndTUSQiASRjIW5\nHwBRj/N8jEBVv6qqGVU9DOBRAC9uDAFyz0odoLHBGIaTUYYAEXEdQa8IBwNIxsIY6AuxEBwRreNr\nEKjqSwBe8rMN3S4Wsfv/4xFmPhE1x7tDF1qpAZSMhTj1k4g2xSDoIsGAIBkNIxnj9E8i2joGQReI\nhAJIxcLo7+NOYES0fQyCDhaLBDEYj3DmDxHtCoOgA0XDQQwlGABE1BoMgg4SCQWwJ9GHWIQBQESt\nwyDoAKFAAIOJMAaiYb+bQkRdiEHQxgIiSMfDSMXCHAQmItcwCNrQymbwg/EIp4ESkesYBG2mvy+E\nwQT3AiYi7zAI2gRnAhGRXxgEPgsHAxhKRJDo4/8VROQP3n18EgwI0vEIklGuBiYifzEIPCbOfgDp\nWJjloImoLTAIPNQfDWEoHkGIA8FE1EYYBB6IReyBYJaEJqJ2xCBwEUtCEFEnYBC4gCUhiKiTMAha\niCUhiKgTMQhagCUhiKiTMQh2KR4JYSgRQSTEmUBE1JkYBDsUDgawpz+CeISXkIg6G+9i2xQQwWA8\ngmSMK4KJqDt43p8hImMi8n9F5JKIXBCRJ7xuw04NRMMYG4ojFedgMBF1Dz/eCAwA/0pV3xCRAQCv\ni8gLqnrRh7ZsSV84iD2sDEpEXcrzIFDVWQCzzu/zInIJwCiAtgsCrgcgol7g6xiBiBwG8CEArzT5\n3hkAZwDgYGbM63axMBwR9Qzf5jyKSD+A/wHgX6pqbuP3VfWsqp5W1dNDe/Z61q54JITMYAxDiQhD\ngIh6gi9vBCIShh0Cz6jqX/jRho24QxgR9SrPg0Ds6TbfAXBJVf+j1+ffqC8cxGA8zPUARNSz/Lj7\n/RqAfwrgnIj80vns36jq//KyEZFQAINxbhFJROTHrKH/B8C3zvdwMIDBRAT9DAAiIgA9tLI4HAwg\nHedUUCKijbo+CEKBANKJMAY5dZ3tAAAEnUlEQVT6WBKCiKiZrg2CUCCAVDyMZJQBQER0J10XBMGA\nIB1jUTgioq3qmiBY2R0sGeVqYCKi7ej4IAiIIMlyEEREO9axQSAiSEZDSHN7SCKiXem4IFjZHzgd\nCyMU5PaQRES71TFBICLo7wthMM4AICJqpY4IgmBAkBmMIcwAICJquY64s4YCwhAgInIJ765ERD2O\nQUBE1OMYBEREPY5BQETU4xgEREQ9jkFARNTjGARERD2OQUBE1OMYBEREPU5U1e82bEpEFgC873c7\ndmkvgBt+N6KN8Hqs4rVYj9dj1W6vxV2qum+zgzoiCLqBiLymqqf9bke74PVYxWuxHq/HKq+uBbuG\niIh6HIOAiKjHMQi8c9bvBrQZXo9VvBbr8Xqs8uRacIyAiKjH8Y2AiKjHMQg8ICJpEXlORN4UkUsi\n8nf8bpNfROR3ReSCiJwXkR+ISNTvNnlJRL4rIvMicn7NZ0Mi8oKIXHZ+HfSzjV65zbX4Q+ffyaSI\n/EhE0n620UvNrsea7/2eiKiI7HXj3AwCbzwF4K9U9RiAUwAu+dweX4jIKIAvAjitqicABAE86m+r\nPPc0gIc3fPYVAD9R1XsB/MT5uhc8jcZr8QKAE6o6DuBtAF/1ulE+ehqN1wMiMgbgEwCuunViBoHL\nRCQJ4EEA3wEAVa2q6pK/rfJVCEBMREIA4gCu+dweT6nqywBubfj4UwC+7/z++wD+kaeN8kmza6Gq\nP1ZVw/nyZwAynjfMJ7f5uwEAfwzgSwBcG9BlELjvCIAFAN8TkV+IyLdFJOF3o/ygqjMA/gj2k80s\ngKyq/tjfVrWF/ao6CwDOr8M+t6ddfA7A//a7EX4SkU8CmFHVCTfPwyBwXwjAhwH8Z1X9EIBl9M6r\n/zpO3/enANwN4CCAhIh8xt9WUTsSka8BMAA843db/CIicQBfA/Ck2+diELhvGsC0qr7ifP0c7GDo\nRX8PwLuquqCqNQB/AeBXfW5TO7guIgcAwPl13uf2+EpEHgPwCIB/or09v/0e2A9NEyLyHuxusjdE\nZKTVJ2IQuExV5wBMichR56OPA7joY5P8dBXAR0UkLiIC+1r05MD5Bs8DeMz5/WMA/tLHtvhKRB4G\n8GUAn1TVot/t8ZOqnlPVYVU9rKqHYT9Ufti5p7QUg8AbXwDwjIhMAvgVAP/e5/b4wnkreg7AGwDO\nwf7711OrSEXkBwB+CuCoiEyLyOcBfAPAJ0TkMuzZId/ws41euc21+CaAAQAviMgvReRPfG2kh25z\nPbw5d2+/eREREd8IiIh6HIOAiKjHMQiIiHocg4CIqMcxCIiIehyDgIioxzEIiIh6HIOAaAdE5AGn\nZn5URBLOHgsn/G4X0U5wQRnRDonIvwMQBRCDXU/qP/jcJKIdYRAQ7ZCIRAC8CqAM4FdV1fS5SUQ7\nwq4hop0bAtAPuzZOT225Sd2FbwREOyQizwN4Fnap4AOq+js+N4loR0J+N4CoE4nIbwEwVPW/iUgQ\nwF+LyMdU9UW/20a0XXwjICLqcRwjICLqcQwCIqIexyAgIupxDAIioh7HICAi6nEMAiKiHscgICLq\ncQwCIqIe9/8B/9gCSvS7aOAAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}